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Abstract

This paper presents a theoretical investigation into the effect of crack-plane plasticity on the vibration of
a transversely edge-cracked beam. The crack-plane is presumed to be loaded statically in either bending or
shear such that Dugdale–Barenblatt type cohesive zones are activated in the crack-plane ahead of the crack
tip. Then the beam undergoes small amplitude vibrations about this state. Euler–Bernoulli beam theory is
used for the vibration analysis in which an infinitesimally thin beam element surrounding the crack-plane is
replaced with a bending and a shear line-spring. The line-springs by nature account for the discontinuities
in slope and deflection, respectively, across the crack-plane. Previous studies of the elastic problem (no
cohesive zones) calculate the compliances of the line-springs from tabulated linear elastic fracture
mechanics solutions and the compliances depend only on the flexural rigidity of the beam and on the crack
length to beam depth ratio. Here the compliance of the line-spring for the mode loaded statically in the
nonlinear range is calculated using the Boundary Element Method (BEM) in an iterative nonlinear analysis
and the compliance depends nonlinearly on the load across the crack plane. This nonlinear
load–deformation relation is linearized about the applied static load level, and the resulting compliance
used in the vibration analysis. Among other results for mode I cohesive zones, there is a strong reduction of
the fundamental frequency as both load and crack length increase and as yield strength decreases. The
results show that there is some potential for designing a non-destructive material characterization technique
which would use the changes in frequency to infer the properties of material behavior laws in the cohesive
zone.
r 2005 Elsevier Ltd. All rights reserved.
see front matter r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that the presence of cracks influences the vibrational characteristics of
structures, primarily by reducing the structure’s stiffness in particular modes. Natural frequency
versus crack geometry relationships are of interest, for example, in the assessment of the
performance integrity of cracked structures, non-destructive evaluation of the extent and location
of cracking, and prediction of the resonant frequency in high-cycle fatigue. The reduction in
natural frequencies caused by transverse cracks in linear elastic beams and similar thin structures
have been studied extensively both theoretically and experimentally. See Refs. [1–14], the
numerous references cited therein, and in particular the 1996 review by Dimarogonas [5]. A
typical beam analysis involves a linear elastic frequency analysis of the vibrating beam, modeled
by Euler–Bernoulli or some higher order beam theory on either side of the (infinitesimally thin)
crack plane along with one of various models for representing the localized increased compliance
of the beam in the neighborhood of the crack plane caused by the presence of the crack.
Theoretical knowledge of the dependence of frequency reduction on crack length and position
then provides a technique for locating and sizing a crack in a beam from experimentally measured
frequency spectra.
The majority of the work cited above in vibration signatures of cracked and damaged structures

has been linear, however there has been a reasonable effort to understand the breathing crack
nonlinearity which manifests itself in any physical situation where the crack faces are not
prevented from opening and closing tight during the vibration. This phenomenon, when allowed
to occur, results in higher harmonics generated through the coupling of the bending vibrations
with longitudinal motions in the direction of the opening and closing [5,15–18]. The crack face
contact also decreases the compliance and, hence, lessen the reduction in frequency compared to
an analysis that ignores the closure portions of the vibration cycle.
This nonlinear work and almost all of the work cited as background to the present study is

related to non-destructive evaluation of cracked civil and mechanical structures. In contrast, the
intent in the present line of investigation is to use the frequency spectra of small laboratory beam
specimens of ductile materials (or simple composite beams with a single ductile interface) to
investigate material behavior near the crack tip. This of course requires both the appropriate
modeling and analysis and the accompanying measurements. This paper contains the first of the
modeling and analysis studies. The eventual purpose is not flaw identification, but rather the goal
is to infer the controlling parameters in a crack plane cohesive traction–displacement relationship
(model) from frequency measurements. Because of this, the present line of investigation is
significantly different in two ways from all of the previous structural vibration analyses,
measurements, and inverse techniques for sizing and locating cracks, some of which are referenced
above. First, the vibration is envisioned to take place while the specimen is subjected to a large
static bending moment [up to as much as 60% of the plastic limit moment for the uncracked
beam] and second, the crack length to beam depth ratio must be intentionally quite large in order
to obtain a reasonable length cohesive zone and a strong effect on the frequency spectrum. In
contrast, a non-destructive testing technique for detecting sub-critical size flaws to avoid the
failure of civil or mechanical structures during service have not been applied to situations with
such large crack length to beam depth ratios or such severe static pre-loading conditions.
However, the calculations here are in the context of a laboratory non-destructive testing technique
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intended for material evaluation and characterization, in which, as described above, such crack
geometries and loading conditions are desirable.
Also, the present paper is only an introductory theoretical investigation. While, experiments are

planned for the future under these conditions, the models in the present analysis have not been
verified yet for a particular material in this setting. Future work will also include calculations for
more complex cohesive laws to be tested against experimental results, and appropriate models
chosen based on the ability to obtain correlations between frequency measurements and
predictions. It is possible that experimental verification of cohesive laws for a few test materials by
some means other than frequency spectra will also be needed for a complete verification. There is
a large body of experimental frequency measurement work on the linear problem that has been
tied first to linear elastic fracture mechanics models to create techniques for determining crack tip
fields, and later for locating and sizing small cracks and some of that literature is cited above, see
e.g. the review in Ref. [5]. However, there is not a single experiment of which the author is aware
that is like the one envisioned with very large static preloads, long cracks, and finite length
cohesive zones. Hence there are no comparisons to experimental data in this paper.
Assuming Euler–Bernoulli beam theory, uniform rectangular beams, classical boundary

conditions at the ends of the beam and linear line-spring representations for the crack planes, the
frequency determinant can be derived easily in closed form or numerically in terms of the bending
and shear compliances across multiple crack planes. These compliances are derivable from well-
tabulated two-dimensional linear elastic fracture mechanics calculations for the stress intensity
factors or crack face displacements of transversely cracked beams [9]. In this linear setting the line-
spring compliances depend only on the crack length, beam depth and Poisson’s ratio and are
independent of the magnitude of the load (bending moment or shear force across the crack plane)
because the spring displacement depends linearly on load. The purpose of the present analysis is to
explore the effect of localized material nonlinearities in the crack plane which cause the line-spring
compliances to depend on the crack-plane load (bending moment or shear force) magnitude on
the frequency response in an otherwise linear vibration analysis. The potential for the use of these
results for extracting the crack plane yield stress at a static pre-load and a known crack length and
location from the measurements of the natural frequencies and mode-shape.
Many materials exhibit a region of plastic behavior that is limited to a thin planar zone ahead

of the crack edge, often referred to as a cohesive zone. The thickness is either taken to be on the
order of some micro-structural dimension, or, more often than not, in a macroscopic calculation
the thickness is assumed negligible. The other distinguishing property of a cohesive zone is that
although very thin, it undergoes stretching (normal to the crack plane) or shearing (of one planar
surface with respect to the other) when the crack is loaded in Mode I or II, respectively. This
imparts a discontinuity in the normal and/or tangential displacements in the surrounding material
on opposite faces of the cohesive zone, just as it occurs across opposing faces of the crack, except
that this discontinuity represents plastic stretching or shearing of intact material as opposed to
separation or sliding of opposing non-contacting crack surfaces. If the surrounding material
remains elastic, cracked bodies with cohesive zones can be modeled with elastic boundary value
problems in which all nonlinear cohesive zone behavior appears only in the boundary conditions
on stress and displacement on opposing sides of the planar cohesive zone. From the point of view
of the cracked beam vibration problem the essential effects are twofold. First, the crack length is
effectively increased, thus increasing the compliance and the reduction in natural frequencies
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compared to those of the effectively shorter elastic crack. Second and more importantly, the
bending or shear compliance depends nonlinearly on the crack-plane bending moment or shear
force, respectively. Thus, the compliance changes during a cycle of vibration, requiring a
linearization procedure for estimating the effective vibrational compliance.
The original cohesive zone models due almost simultaneously to Dugdale and Barenblatt

assumed that in mode I, independent of the amount of cohesive zone stretching, the tensile stress
across the cohesive zone is everywhere equal to the yield stress in tension of the material.
However, there is much evidence and theoretical justification for the notion that as the plastic
stretching or shearing approaches a critical value the stress necessary to cause the plasticity
decreases to zero at the critical value which coincides with unstable crack growth. The present
analysis is limited to the simpler, albeit less realistic, Dugdale–Barenblatt model which does not
allow for softening. Softening cohesive zones will be treated in subsequent work.
Section 2 contains the framework for the nonlinear line-spring model in both the beam

vibration and fracture mechanics settings. This section results in an effective crack-plane
compliance for use in the vibration analysis, described in Section 3, which depends on the J-
integral for a cracked beam segment with a cohesive zone, the calculation of which is described in
Section 4. Section 5 presents the numerical results for the compliances as a function of load, crack
length and cohesive zone yield strength. Section 6 presents the resulting natural frequencies and
some concluding remarks are made in Section 7.
2. Crack-plane compliance and nonlinear cracked beam response

The effect of the crack on the vibration of the rest of the beam will be modeled by a line-spring,
i.e. the crack plane is assumed to divide the beam into two regions which interact across the crack
plane through zero width bending and shear springs which allow discontinuities in deflection and
slope. To obtain the stiffnesses (or their reciprocal, the compliance) of these crack plane springs a
representative cracked beam element is analyzed using static 2D fracture mechanics as described
below in Section 4. Figs. 1a and b show such representative cracked beam elements and serve to
illustrate all of the quantities which appear in the two line-spring relations. The discontinuities in
slope [Y] and deflection [W] across the crack plane are assumed to be functions of the crack plane
bending moment M and shear force Q, respectively through the compliances ly and lW. Let the
Fig. 1. Cracked beam elements: (a) Mode I crack plane bending moment and discontinuity in slope, P ¼M, D ¼ ½Y�,
½Y� ¼ lyM. (b) Mode II crack plane shear force and discontinuity in displacement, P ¼ Q, D ¼ ½W �, ½W � ¼ lW Q. The

dashed line represents the ligament (intact part of the crack plane).
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generalized load be P and the generalized displacement D be the kinematic discontinuity across
the crack plane. Then the generalized line-spring relation can be written in terms of the
generalized compliance l and the bending and shear mode spring relations are given as separate
cases:

D ¼ lP, (1)

Bending : D ¼ ½Y� ¼W 0
1 �W 0

2; l ¼ �ly; P ¼M,

Shear : D ¼ ½W � ¼W 1 �W 2; l ¼ lW ; P ¼ Q. ð2a;bÞ

The W i ¼W iðxÞ are the x-dependences of the deflections wi(x, t) (i ¼ 1, 2) in the two parts of the
beam, and primes denote differentiation with respect to x. This modification of the original line-
spring concept [19] is used, e.g., in Ref. [9] to analyze the vibration of an elastic cracked beam in
the absence of a crack plane cohesive zone. The compliance in this case is a function of the beam
properties and the crack length to beam depth ratio only, Eq. (1) is a linear relationship, and there
are no difficulties in carrying out a traditional linear beam vibration analysis for a two part beam
connected by linear springs.
Referring again to Fig. 1, it is seen that for a crack of length less than or equal to half the depth

of the beam, bending causes a tensile mode I stress state at the crack tip and transverse shear
loading causes a mode II state. If either mode loading is sufficient to cause a cohesive zone to be
activated during vibration then the compliance depends on the load nonlinearly and the
load–displacement relationship is no longer linear. Hence, if there is cohesive behavior,
since the crack-plane loading varies during a vibration cycle, the compliance is also a function
of time. This violates the separable, time-harmonic solution form for w(x, t) assumed in
traditional linear vibration analysis, which requires the compliances to be constant in time.
Hence in order to capture exactly the interaction between compliance and load during a
cycle of vibration a fully transient solution must be carried out both for the beam vibrations and
for the cracked compliance calculation, which would require iteration at each time-step to
satisfy Eq. (1).
However, if, as envisioned in the present situation, the beam is subjected to a static pre-load

causing cohesive behavior, and then allowed to undergo small amplitude vibration about this
state, then the nonlinear load–displacement relation can be linearized about the static operating
point. This is outlined in Fig. 2, which shows a softening nonlinear load–displacement relation
and a local tangent line at the operating point along which the cracked beam element is assumed
to load and unload during a vibration cycle. The effective dynamic stiffness is the slope of the
tangent line at the operating point, as opposed to the stiffness which is the slope of the line from
(0, 0) to (P0, D0). For the mode in the linear range, the effective and actual compliance are the
same. Noting Eq. (1) then the effective compliance at any load P and corresponding displacement
D is given by

leff ðP; aÞ ¼
qD
qP
¼ lðP; aÞ þ P

qlðP; aÞ
qP

. (3)

Because of unresolved conceptual difficulties with a mixed-mode planar cohesive zone, it is
assumed that in this first study only one mode is loaded statically into the nonlinear range at any
time, the cohesive zone is purely that mode, and the other mode is in the elastic range. In other
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Fig. 2. A softening nonlinear cracked beam element response curve at some fixed crack length, a. The effective

linearized stiffness (inverse of the effective compliance) used in the vibration analysis is the slope of the local tangent line

to the curve, whereas the slope of the line from the origin to a point on the curve is the inverse of the compliance itself.
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words, if the static loading is, for example, in bending (mode I), then the plastic ly ¼ lyeff is found
from Eq. (3) and the elastic lW may be found from the results in Yokoyama or by using the
present analysis without a cohesive zone.
It now remains to determine l(P, a) for the cracked beam element with a cohesive zone. This is

done by relating it to the J-integral through an energy argument applied to a cracked beam
element. The strain energy release rate of a cracked body is defined to be the amount of strain
energy stored in the cracked body available to create new crack surface per unit area of crack
surface created and is given by [20]

GðP; aÞ ¼ �
1

b

dPðP; aÞ
da

, (4)

where b is the out of plane thickness of the cracked body, a is a coordinate measuring crack length
and P(P, a) is the total strain energy stored in the cracked body. Assuming the only external load
on the cracked body which does work is the load P, and also assuming load control, the stored
strain energy is minus the work done by the load through the displacement. This and the use of
Eqs. (1) and (4) and the equivalence of the strain energy release rate and the J-integral defined in
Section 4, gives

PðP; aÞ ¼ �
Z P

0

DðP; aÞdP ¼ �

Z P

0

lðP; aÞPdP
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) JðP; aÞ ¼ GðP; aÞ ¼
1

b

Z P

0

qlðP; aÞ
qa

PdP

) lðP; aÞ ¼
b

P

Z a

0

qJðP; aÞ

qP
da. ð5a2cÞ

In this two-dimensional setting, J is really a function of the load per unit thickness out-of-plane,
P̄ ¼ P=b, and not the load itself. Also in this geometry, J is a function of crack length to depth
ratio a/d and not the crack length itself. Hence the generalized compliance may be rewritten
as follows:

lðP; aÞ ¼ lðP̄; a=dÞ ¼
d

b

1

P̄

Z a=d

0

qJðP̄; a=dÞ

qP̄
dða=dÞ. (6)

Substituting this l(P, a) into Eq. (3) gives the desired effective compliance to be used below in the
beam vibration analysis.
3. Beam vibrations with a line-spring and the frequency determinant

The beam shown in Fig. 3 is cracked along the plane x ¼ c from y ¼ �d=2 to y ¼ �d=2þ a.
The beam is divided into regions 1: 0oxoc and 2: coxoL in which the equations of
motion of Euler–Bernoulli beam theory in the absence of transverse loading and rotary
inertia apply:

EI
q4wðx; tÞ

qx4
þ rA

q2wðx; tÞ
qt2

¼ 0. (7)

The two regions of the beam interact through bending and shear line springs with compliances ly
and lW. If the static loading is, for example, in bending, then ly ¼ lyeff as defined above in Eqs.
(3) and (6), and lW ¼ lWelastic, which may be found from the formulas in Yokoyama or by using
the present analysis without a cohesive zone. Eq. (7) assumes a positive upward deflection w(x, t)
and the convention that concave up corresponds to positive curvature. The sign convention on the
bending moment is such that positive bending moments M(x, t) cause positive curvature
and positive shear Q(x, t) is down on a cross-section facing to the right. Considering vibratory
motion, let the deflection be of the form wðx; tÞ ¼W ðxÞsinðotÞ. Then the sign conventions
Fig. 3. Simply supported cracked beam geometry for vibration analysis. The beam depth and length are d and L,

respectively. The crack length and position are a and c, respectively. The origin of the coordinate system is at the left

end of the beam as shown.
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stated imply:

Qðx; tÞ ¼ EIW 000ðxÞ sinðotÞ,

Mðx; tÞ ¼ EIW 00ðxÞ sinðotÞ,

Qðx; tÞ ¼
qMðx; tÞ

qx
. ð8a2cÞ

The general solutions of Eq. (7) for each region are written below in terms of the non-dimensional
wavenumber k and position coordinate x ¼ x=L

W 1ðxÞ ¼ c1 sinðkxÞ þ c2 cosðkxÞ þ c3 sinhðkxÞ þ c4 coshðkxÞ; xob,

W 2ðxÞ ¼ c5 sinðkxÞ þ c6 cosðkxÞ þ c7 sinhðkxÞ þ c8 coshðkxÞ; x4b, ð9a;bÞ

where the non-dimensional wavenumber is given by

k2 ¼ oL2

ffiffiffiffiffiffiffi
rA

EI

r
(10)

in terms of the frequency, o; the flexural rigidity, EI; the mass per unit volume, r; the length of the
beam L, and the uniform cross-sectional area A ¼ b� d, where b is the beam thickness and d is
the depth of the beam. The constant b ¼ c=L is the non-dimensional position of the crack, see
Fig. 3. While the following is for the simply supported beam, other boundary conditions may be
treated with the same technique. The simply supported conditions at each end eliminate four of
the eight constants:

W 1ð0Þ ¼W 00
1ð0Þ ¼ 0) c2 ¼ c4 ¼ 0,

W 2ð1Þ ¼W 00
2ð1Þ ¼ 0) c6 ¼ �c5 tanðkÞ; c8 ¼ �c7 tanhðkÞ. ð11a;bÞ

The remaining four boundary conditions are across the crack plane x ¼ b. The first two are
continuity of bending moment and shear force across the crack plane and the third and fourth
conditions express the line-spring model, Eqs. (1) and (2), for the crack plane.

W 00
2ðkbÞ ¼W 00

1ðkbÞ,

W 000
2 ðkbÞ ¼W 000

1 ðkbÞ,

W 0
1ðkbÞ �W 0

2ðkbÞ ¼ � lyEIW 00
1ðkbÞ,

W 1ðkbÞ �W 2ðkbÞ ¼ lW EIW 000
1 ðkbÞ. ð12a2dÞ

Substitution of the expressions for c6 and c8 from Eq. (11b) and applying these four boundary
conditions yields four linear non-dimensional homogenous equations in the remaining constants
c1, c3, c5 and c7. The frequency equation is thus given by

D¼det

� sinðkbÞ sinhðkbÞ sinðkbÞ � cosðkbÞ tanðkÞ � sinhðkbÞ þ coshðkbÞ tanhðkÞ

� cosðkbÞ coshðkbÞ cosðkbÞ þ sinðkbÞ tanðkÞ � coshðkbÞ þ sinhðkbÞ tanhðkÞ

sinðkbÞ þ l̄Wk3 cosðkbÞ sinhðkbÞ � l̄Wk3 coshðkbÞ � sinðkbÞ þ cosðkbÞ tanðkÞ � sinhðkbÞ þ coshðkbÞ tanhðkÞ

cosðkbÞ � l̄yk sinðkbÞ coshðkbÞ � l̄yk sinhðkbÞ � cosðkbÞ � sinðkbÞ tanðkÞ � coshðkbÞ þ sinhðkbÞ tanhðkÞ

2
66664

3
77775 ¼ 0:

(13)
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The determinant D is a function only of k, b ¼ c=L and the non-dimensional compliances:

l̄y ¼
lyEI

L
; l̄W ¼

lW EI

L3
. (14a,b)

For given b, l̄y, and l̄W the determinant is expanded symbolically, set equal to zero and the first
three roots for k are found numerically after obtaining search ranges for the roots graphically.
The corresponding natural frequencies can then be found from Eq. (10). The mode shapes may
also be found then from Eqs. (9), (11) and (13).
4. J-integral reduction and BEM calculation of crack tip displacements

The J-integral is a path independent line integral surrounding the crack tip and is defined as [20]

J ¼

I
G

U dx1 � T1
qu1

qx2
ds� T2

qu2

qx2
ds

� �
, (15)

where the strain energy density U and the traction and displacement vectors ðT1;T2Þ and ðu1; u2Þ

are functions of the coordinates ðx1; x2Þ with origin and orientation such that x1 ¼ 0 is the crack
plane. In this section the dependence of all quantities on load and crack length has been
suppressed. The path G may be any counterclockwise path in the ðx1;x2Þ plane which
Fig. 4. A mode I cohesive zone. Hash marks denote plastically deformed material in the zone. The crack tip opening

displacement (CTOD) is shown, as is the path for the J-integral.



ARTICLE IN PRESS

D.A. Mendelsohn / Journal of Sound and Vibration 292 (2006) 59–8168
circumscribes the crack tip and ds is an increment of length along the path. Fig. 4 shows a
schematic of a mode I cohesive zone and the path chosen in this analysis. The position of the
elastic crack tip is x2c and x2p is the a priori unknown position of the end of the cohesive zone. As
G shrinks around the cohesive zone it becomes, in the limit, the two paths: {x1 ¼ 0þ, from
x2 ¼ x2c to x2 ¼ x2p}, {x1 ¼ 0�, from x2 ¼ x2p to x2 ¼ x2c}. On these paths ds ¼ þdx2 and �dx2,
respectively, and dx1 ¼ 0. Continuity of stress across the cohesive zone requires Ti� ¼ �Tiþ

(i ¼ 1, 2). Hence the J-integral reduces to

J ¼ �

Z x2p

x2c

T1þ
q½u1�
qx2
þ T2þ

q½u2�
qx2

� �
dx2, (16)

where the ½ui�ðx2Þ � ½uiðx1;x2Þ�x1¼0þ
� ½uiðx1;x2Þ�x1¼0�

(i ¼ 1; 2) are the jumps in displacement
across the crack plane which represent plastic stretching in the cohesive zone. Recalling that the
analysis is limited to the case of a single mode cohesive zone, one or the other of these jumps is
zero. Each mode’s separate J-integral is then

JI ¼ �

Z x2p

x2c

T1þ
q½u1�
qx2

dx2;

JII ¼ �

Z x2p

x2c

T2þ
q½u2�
qx2

dx2. ð17a;bÞ

Eqs. (17a,b) are valid for any cohesive law which relates the traction to the displacement jump.
The original implementation of a narrow strip cohesive zone ahead of the crack tip is due to both
Dugdale [21] and Barenblatt [22], who assumed the traction is equal to the yield stress everywhere
in the cohesive zone and found the length of the zone by setting the stress intensity factor at it’s
end equal to zero. More realistic cohesive laws which reflect many materials’ softening behavior
are available in the literature, some of which will be considered in later work. Only the
Dugdale–Barenblatt model is used here. In that case the integrals in Eq. (17a,b) can be evaluated
in closed form:

JI ¼ � sY ½u1�ðx2pÞ � ½u1�ðx2cÞ
� �

¼ sY ½u1�ðx2cÞ ¼ sYCTOD;

JII ¼ � tY ½u2�ðx2pÞ � ½u2�ðx2cÞ
� �

¼ tY ½u2�ðx2cÞ ¼ tYCTSD; ð17c;dÞ

where sY and tY are the yield stress in tension and shear, respectively, of the material, and CTOD
and CTSD stand for crack tip opening displacement and crack tip sliding displacement,
respectively. Hence, the nonlinear J-integral evaluation for a Dugdale–Barenblatt cohesive zone
reduces to finding the CTOD or CTSD. This is done using the Boundary Element Method (BEM).
The BEM model for a cracked beam element subjected to either pure bending or pure shear

causing, respectively, a pure mode I or pure mode II stress-state at the crack tip is shown in Fig. 5.
To obtain the bending (mode I) case couples are applied to the left end and right ends of the beam
(force pairs TI). To obtain the shear (mode II) case the four vertical loads are placed so that the
two inner loads (TIIA), which are equidistant from the crack plane, x1 ¼ 0, create a couple equal
and opposite to the one created by the outer loads (TIIB), which are also equidistant from the
crack plane. Since the BEM analysis is two-dimensional plane stress, the crack-plane bending
moment caused by the couples of horizontal forces is really a bending moment per unit thickness,
and the crack-plane shear caused by the vertical load arrangement is a shear force per unit
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Fig. 5. (a) BEM model for the cracked beam element used for calculation of CTOD or CTSD. Origin of coordinate

system is chosen in the center of the model: x2 ¼ �d=2 are the top and bottom of the beam and x2 ¼ 0 is the midplane.

(b) Detail of crack plane boundary between two BEM regions showing the three portions of the boundary: open crack,

cohesive zone (dash-dot) and bonded ligament (dash).
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thickness. Recall that the J-integral and the resulting compliance are to be used in the context of
the cracked beam elements in Fig. 1 which are meant to include the local crack effects only. Hence
the BEM model in Fig. 5a is taken long enough in the x1 direction so that the results are
independent of the length of the model and represent crack response only. The origin of the
coordinate system is midway through the depth of the model and in the crack plane. The
boundaries G1 and G2 of regions 1 and 2 are mirror images of each other and each consist of four
line segments, one of which is the shared crack plane boundary. All boundary segments are
discretized into constant and equal length elements, over which tractions and displacements are
assumed constant. The direct form of the two 2D BEM is used here, see Refs. [23,24] for details.
The boundary conditions and iterative solution method are described next.
In the bending/mode I load arrangement only the horizontal force couples in Fig. 5a are acting.

The boundary conditions on the four loaded elements on the right and left end of the beam are
ðT1;T2Þ ¼ ð�TI ; 0Þ, where the plus sign is for the upper right and lower left load elements and the
minus sign is for the upper left and lower right load elements. The resultant crack plane shear
force is zero and the resultant crack plane bending moment per unit thickness, M̄ ¼M=b, is the
product of the traction TI, the element length, and the distance between the nodes of the loaded
elements.
In the shear/mode II load arrangement only the vertical force couples in Fig. 5a are applied.

The traction boundary conditions on the two inner loaded elements are ðT1;T2Þ ¼ ð0;�TIIAÞ,
where the plus sign is for the lower element and the minus sign is for the upper element. Similarly,
the boundary conditions on the two outer loaded elements are ðT1;T2Þ ¼ ð0;�TIIBÞ. The resultant
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crack plane bending moment is zero and the resultant crack plane shear force per unit thickness,
Q̄ ¼ Q=b, is minus the product of the difference in tractions ðTIIA � TIIBÞ and the element length.
Boundary conditions for all unloaded elements on non-crack-plane boundaries are stress free,

i.e. zero traction, ðT1;T2Þ ¼ ð0; 0Þ. Referring to Figs. 4 and 5b, the boundary conditions on the
two stress free crack faces are zero traction and the normal and tangential displacements on each
of the faces are unknown. Discontinuities across the crack plane represent relative crack opening
or crack sliding displacements. In a Mode I (II) cohesive zone the normal (shear) stress is equal to
the yield stress sY (tY), the shear (normal) stress is zero, stress is continuous across the cohesive
zone, and the normal and tangential displacements on each of the two sides of the cohesive zone
(limits from the left and right) faces are unknown. Discontinuities in displacement across the
cohesive zone represent plastic stretching. In the ligament, from the end of the cohesive
zone to the top of the beam, continuity of normal and tangential stresses and displacements is
imposed.
While the material remains elastic everywhere inside both BEM boundaries, the problem is

nonlinear due to the inequality constraints which determine the unknown position of the end of
the cohesive zone, x2p. The first constraint is that in the cohesive zone and the crack the jump in
displacements is always of the same sign and consistent with the direction of the applied loading.

�
d

2
ox2ox2p; Mode I : ½u1� ¼ ðu1þ � u1�Þ40; Mode II : ½u2� ¼ ðu2þ � u2�Þ40. (18)

The plus or minus in the subscript refer to evaluation at x1 ¼ 0�. The second constraint is that in
the ligament the traction corresponding to the loading mode cannot exceed the appropriate yield
stress.

x2pox2o
d

2
; Mode I : jT1�josY ; Mode II : jT2�jotY . (19)

If the first guess for the length of the cohesive zone is smaller than the correct value, then the stress
constraint in the ligament will be violated, and if it is too large, then the displacement jump
constraint will be violated. In practice, if this constraint is violated, it is always violated for some
portion of the crack adjacent to the crack tip. An automatic iterative scheme was developed based
on these constraints. Since calculations are done repeatedly over a slowly varying range of crack
lengths, applied loads, and yield strength values, once a few calculations are made in a parameter
sweep, the previous value of the length of the cohesive zone is used as a first guess for the next
calculation. This usually results in only two or three iterations. As stated above and in Eq. (17) the
only pertinent output from the BEM model is the CTOD in the mode I case and the CTSD in the
mode II case. Since the crack tip lies at the boundary between two elements the crack tip
displacement is found by averaging the values for the two elements adjacent to the crack tip; one
in the cohesive zone and one in the open crack.
5. Cohesive and elastic compliance calculation

Calculations were performed for two loading situations. In the first the static loading in the
nonlinear range is in bending (Mode I) and the plastic effective compliance is calculated using the
CTOD calculated from BEM model in bending and the crack shear response (Mode II) is elastic
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as in Yokoyama. In the second loading situation the static loading in the nonlinear range is shear
(Mode II) and the plastic effective compliance is calculated using the CTSD calculated from BEM
model in shear and the crack bending response (Mode I) is elastic as in Yokoyama. The latter
mode II plastic results are qualitatively similar to the mode I plastic results and hence only the
mode I plastic results are presented here.
In all calculations Young’s modulus, Poisson’s ratio and beam depth are taken to be

E ¼ 72:8GPa, n ¼ 0:3 and d ¼ 1:25 cm. The beam length does not appear in the BEM
formulation or in the calculation of the compliance ly, through Eqs. (3) and (6), but it does appear
in the definition of the non-dimensional compliances l̄y in Eq. (14a) and hence influences the
frequency determinant D in Eq. (13). Results are shown for only one value of beam depth to
length ratio length: d=L ¼ 0:1.
In the parameter study performed, the yield stress sY was varied in the range 50–100MPa,

crack lengths ranged from a=d ¼ 0:06 to 0.50, and the applied static moment per unit
thickness M̄ ranged from .75 to 1.5 kN. A load of M̄ ¼ 1:5kN was sufficient to cause a cohesive
zone of reasonable length at all crack lengths and yield stresses used. At each value of
yield stress a matrix of JI ðM̄; a=dÞ values is calculated from Eq. (17c) using the CTOD from the
BEM calculation. The dependence of the JI both on load at fixed crack length as well as on
crack length at fixed load are approximated by polynomial fits for use in the compliance
calculation. Typical results for JI ðM̄; a=dÞ versus M̄ for various a/d are shown in Fig. 6a, while
Fig. 6b shows the partial of JI ðM̄; a=dÞ with respect to M̄ versus a/d for various M̄. While the
dependence on M̄ is similar the J values in Fig. 6a are always larger than those for the crack
without the cohesive zone.
The bending compliance ly is found from Eq. (6) with P̄ ¼ M̄ and the effective bending

compliance lyeff is calculated from Eq. (3) with P̄ ¼ M̄. Finally the effective non-dimensional
compliance l̄yeff , which appears in the frequency equation (13), is calculated using Eq. (14a). The
moment of inertia of the assumed rectangular beam cross-section b� d which appears in Eq. (10b)
is I ¼ bd3=12, but it should be noted that l̄yeff is independent of beam thickness b [see Eq. (14) and
the definition of P̄].
Fig. 7a shows plots of l̄yeff versus yield stress in the cohesive zone at four values of the applied

moment (M̄ ¼ 0:75, 1.0, 1.25, 1.5 kN) at the crack length a=d ¼ 0:46. Fig. 7b shows plots of l̄yeff
versus the yield stress at three values of crack-length to depth ratio (a=d ¼ 0:42, 0.46, 0.50) at the
applied moment M̄ ¼ 1kN. The results in Figs. 7a and b are intuitive in that the compliance
decreases as the yield strength increases and makes the cracked beam element harder to bend,
while the compliance increases with increasing load or relative crack length, both of which make
the cracked section easier to bend.
6. Natural frequencies

Observing the determinant D in Eq. (13) for a simply supported beam of length L and depth d,
the natural frequencies for the cracked beam depend only on the relative crack position b ¼ c=L

and the non-dimensional bending and shear compliances just discussed. In all cases here the crack
is at the midspan, b ¼ 1

2
. With regard to the compliances, two different problems are given below:

(1) the elastic problem with a crack of length a without a cohesive zone [l̄y ¼ ðl̄yÞelastic and
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Fig. 6. (a) Typical results for the mode I J-integral versus applied moment per unit thickness for crack length to depth
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increasing moment.
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l̄W ¼ ðl̄W Þelastic] and (2) the plastic mode I problem with a crack of length a with a cohesive zone
loaded statically in mode I [l̄y ¼ l̄yeff and l̄W ¼ ðl̄W Þelastic]. Results for the plastic mode II problem
are not presented here. The effective compliances for the plastic mode I problem are in Fig. 7. For
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the fixed beam depth d ¼ 1:25 cm, the non-dimensional elastic compliances depend only on a/d
and d/L and the rectangular shape of the cross-section of the beam and they may be found by an
analysis as in Yokoyama or by using the present BEM model with a bonded ligament instead of a
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Table 1

Values of elastic effective compliances

a=d ¼ 0:42 a=d ¼ 0:46 a=d ¼ 0:50

l̄W

� �
elastic

3.6763� 10�5 5.0008� 10�5 6.6390� 10�5

l̄y
� �

elastic
0.18885 0.24123 0.30748

Table 2

Values of first and third elastic non-dimensional wavenumbers

a=d ¼ 0:42 a=d ¼ 0:46 a=d ¼ 0:50

ðk1Þelastic 2.8989 2.8460 2.7853

ðk3Þelastic 8.8515 8.75911 8.6641
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cohesive zone. The present BEM formulation was verified for the elastic case by comparing to
Yokoyama’s roots for a few cases. For the a/d and d=L ¼ 0:1 used in this study the elastic non-
dimensional compliances are given in Table 1.
Call the roots of the frequency equation (13) kn (n ¼ 1; 2; 3; . . .). They are related to the nth

natural frequency by Eq. (10), which gives

on ¼
ðknÞ

2

L2

ffiffiffiffiffiffiffi
EI

rA

s
. (20)

The natural frequencies for the plastic mode I problem reported in Figs. 8a–d are normalized with
respect to the elastic natural frequencies, i.e. values of the ratio given by

ðonÞplastic

ðonÞelastic
¼
ðknÞ

2
plastic

ðknÞ
2
elastic

(21)

are reported. The first and third elastic roots are found using the elastic compliances in Table 1
and are independent of the crack plane load and are given in Table 2. As a further reference, from
classical beam vibration analysis, the well known uncracked values of kn are equal to np and are
obviously independent of both a/d and d/L. As a result of the increasing compliance, for a given
geometry the roots always obey the inequality given below.

ðknÞuncracked4ðknÞelastic4ðknÞplastic3ðonÞuncracked4ðonÞelastic4ðonÞplastic. (22)

Note that for the present case of the crack located at the midspan, since the second mode is anti-
symmetric about the midspan, the crack plane is subjected only to shear and the second mode
frequency does not depend on the plastic effective bending compliance, but depends only on the
elastic shear compliance lWelastic, which is independent of the static load into the nonlinear range.
Hence the second mode is not sensitive to the load or the yield stress. If the crack were not located
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at the midspan all of the frequencies would depend on the nonlinear bending compliance and
hence on the static nonlinear load. However, the biggest effect of the bending compliance on
frequency will always occur in the first mode and when the crack is at the midspan.
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Results for the n ¼ 1 and n ¼ 3 frequency ratios defined in Eq. (21) are shown in Figs. 8–11.
Figs. 8 and 10 come from the plastic effective bending compliance curves in Fig. 7a, and Figs. 9
and 11 come from the plastic effective bending compliance curves in Fig. 7b. Figs. 8a and b show
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the n ¼ 1 and n ¼ 3 frequency ratios versus the plastic effective bending compliance l̄yeff for the
values of l̄yeff corresponding to points on the curves in Fig. 7a. The four curves in Fig. 7a are all
for the same crack length and therefore map onto single master curves (solid lines) in Figs. 8a and
b. This is because the elastic shear compliance is the same for all four curves in Fig. 7a at the four
load levels and, hence, the frequency ratios depend only on the value of l̄yeff and not on the load
directly. The curve in Fig. 7a from which the points come are indicated by the symbols in Figs. 7a,
8a and 8b. Note that, for example, the upper most triangle on the M ¼ 1:5kN curve in Fig. 7a
maps to the lowest most triangle on the curves in Figs. 8a and b. Note that theoretically the
effective compliance can range from zero to infinity. Each curve in Fig. 7a at successively higher
loads map onto longer and longer portions of the master curve with the starting and ending
point of the portion moving monotonically down the master curve. The master curves show
power law behavior with very good fits out to much larger values of l̄yeff than shown here,
decaying almost as fast as l̄yeff

� ��1
.

Because each of the three curves in Fig. 7b are for different crack lengths, different values
of the elastic shear compliance must be used, see Table 1, and the curves map onto
three different curves in Figs. 9a and b. Full master curves for the different crack lengths are
not shown, nor are individual data points and the solid lines indicate the range of data in the
corresponding curve in Fig. 7b. Moving left to right on each of the six curves in Figs. 9a and b, the
yield stress goes from 100MPa at the far left to 50MPa on the far right. It can be seen
that for the n ¼ 1 frequency ratio in Fig. 9a that as the crack lengths increase the results are
further down the curves, but the smallest slopes of each curve (at the right ends) are not too
different on the three curves, indicating about equivalent amounts of saturation of the effect with
respect to increasing l̄yeff . However the results for the n ¼ 3 frequency ratio in Fig. 9b the smallest
slope is much less for the longer crack than for the two shorter crack lengths, indicating quite
different amounts of saturation of the effect with respect to increasing l̄yeff , saturating the fastest
for the largest crack length. This causes a counterintuitive behavior in the frequency as a function
of yield stress shown below.
The n ¼ 1 and n ¼ 3 frequency ratio vs. yield stress curves in Figs. 10a and b, respectively,

correspond to the similarly marked curves in Fig. 7a, while Fig. 11 shows the frequency ratio
curves which correspond to similarly marked curves in Fig. 7b. The results for different loads at a
fixed crack length in Figs. 10a and b present no surprises. Frequencies increase monotonically
with increasing yield stress and decreasing load as expected. The change in behavior from concave
up to concave down as the load is decreased may be an exploitable identifying feature. The results
for different crack lengths at a fixed load are given in Figs. 11a and b. For the entire range in
Fig. 11a and most of the range in Fig. 11b the frequency ratios increase monotonically with
increasing yield stress and decreasing crack length as expected, except for the n ¼ 3 ratios at the
lower end of the yield stress range, where the longer crack ratio does not decrease as fast as the
shorter cracks with decreasing yield stress. This is a reflection of the much smaller slopes in the
longer crack curve in Fig. 9b compared to the shorter cracks at low yield stress (large l̄yeff ) and
indicates that the longer the crack the more quickly the compliance effect saturates as the yield
decreases and there is a longer more stretched cohesive zone. This saturation could be caused by
the load being so large that the cohesive zone takes over the entire ligament at a short crack length
and as the crack length increases past this value the cohesive zone cannot get any longer, it just
gets stretched more and more. However, care was taken that this did not occur. At the load level
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in Figs. 7b, 9 and 11 the cohesive zone occupies about 90% of the ligament at the longest crack
length.
7. Conclusions

It is clear from these limited calculations that the presence of a plastic cohesive zone may reduce
the fundamental frequency from its value for the elastic crack without a cohesive zone by as much
as 50% for low yield stress and large cohesive zones. Moreover there is relatively strong sensitivity
to the yield stress over a relatively small range of only 50–100MPa, which should be exploitable.
There are two kinds of material characterization problems for which an analysis of the type
presented here could be used. The first deals with determining the cohesive strength of a very thin
adhesive layer between two adherends, modeled by the crack plane and the material on either side.
The analysis above is for the same material on either side of the crack plane but that could easily
be modified. The second deals with a crack in a homogeneous ductile beam for which the present
results could be used to determine the actual yield strength or flow stress in the material near the
crack tip. The success of such a method would depend very much on how applicable the
assumptions of a Dugdale–Barenblatt cohesive model are for the given material. In future studies
more realistic cohesive models which exhibit softening before failure will be employed, and
experimental capabilities will be developed for measuring frequencies and mode-shapes of cracked
beams subjected to a large static load bending moment. The simplest of the softening cohesive
laws would require two or three parameter estimation as opposed to the single yield stress
parameter in the present work.
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